\(\int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [95]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 84 \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f} \]

[Out]

-arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*a^(1/2)/f+arctanh(sec(f*x+e)*b^(1/2)/(a-b+b*sec(f*x+e)
^2)^(1/2))*b^(1/2)/f

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3745, 399, 223, 212, 385, 213} \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{f}-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{f} \]

[In]

Int[Csc[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[
e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 399

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Dist[b/d, Int[(a + b*x^n)^(p - 1), x]
, x] - Dist[(b*c - a*d)/d, Int[(a + b*x^n)^(p - 1)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c
 - a*d, 0] && EqQ[n*(p - 1) + 1, 0] && IntegerQ[n]

Rule 3745

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m
 + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\sqrt {a-b+b x^2}}{-1+x^2} \, dx,x,\sec (e+f x)\right )}{f} \\ & = \frac {a \text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{f} \\ & = \frac {a \text {Subst}\left (\int \frac {1}{-1+a x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f} \\ & = -\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(170\) vs. \(2(84)=168\).

Time = 2.68 (sec) , antiderivative size = 170, normalized size of antiderivative = 2.02 \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sec (e+f x) \left (-\sqrt {a} \arctan \left (\frac {\sqrt {a} \sqrt {\sec ^2(e+f x)}}{\sqrt {-a-b \tan ^2(e+f x)}}\right ) \sqrt {-a-b \tan ^2(e+f x)}+\sqrt {a-b} \sqrt {b} \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\sec ^2(e+f x)}}{\sqrt {a-b}}\right ) \sqrt {\frac {a+b \tan ^2(e+f x)}{a-b}}\right )}{f \sqrt {\sec ^2(e+f x)} \sqrt {a+b \tan ^2(e+f x)}} \]

[In]

Integrate[Csc[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(Sec[e + f*x]*(-(Sqrt[a]*ArcTan[(Sqrt[a]*Sqrt[Sec[e + f*x]^2])/Sqrt[-a - b*Tan[e + f*x]^2]]*Sqrt[-a - b*Tan[e
+ f*x]^2]) + Sqrt[a - b]*Sqrt[b]*ArcSinh[(Sqrt[b]*Sqrt[Sec[e + f*x]^2])/Sqrt[a - b]]*Sqrt[(a + b*Tan[e + f*x]^
2)/(a - b)]))/(f*Sqrt[Sec[e + f*x]^2]*Sqrt[a + b*Tan[e + f*x]^2])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(427\) vs. \(2(72)=144\).

Time = 0.52 (sec) , antiderivative size = 428, normalized size of antiderivative = 5.10

method result size
default \(\frac {\sqrt {a +b \tan \left (f x +e \right )^{2}}\, \left (2 \sqrt {b}\, \ln \left (-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sec \left (f x +e \right )-4 b \sec \left (f x +e \right )\right ) \sqrt {a}-a \ln \left (-\frac {4 \left (\cos \left (f x +e \right ) \sqrt {a}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}+\cos \left (f x +e \right ) a -b \cos \left (f x +e \right )+\sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sqrt {a}+b \right )}{\cos \left (f x +e \right )-1}\right )-\ln \left (\frac {2 \cos \left (f x +e \right ) \sqrt {a}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}+2 \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sqrt {a}-2 \cos \left (f x +e \right ) a +2 b \cos \left (f x +e \right )+2 b}{\sqrt {a}\, \left (\cos \left (f x +e \right )+1\right )}\right ) a \right ) \cos \left (f x +e \right )}{2 f \sqrt {a}\, \left (\cos \left (f x +e \right )+1\right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}}\) \(428\)

[In]

int(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/f/a^(1/2)*(a+b*tan(f*x+e)^2)^(1/2)*(2*b^(1/2)*ln(-4*b^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)
+1)^2)^(1/2)-4*b^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*sec(f*x+e)-4*b*sec(f*x+e))*a
^(1/2)-a*ln(-4*(cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)+cos(f*x+e)*a-b*c
os(f*x+e)+((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))-ln(2/a^(1/2)*(
cos(f*x+e)*a^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)+((a*cos(f*x+e)^2-b*cos(f*x+e)^2+
b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+b)/(cos(f*x+e)+1))*a)*cos(f*x+e)/(cos(f*x+e)+1)/(
(a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 514, normalized size of antiderivative = 6.12 \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\left [\frac {\sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) + \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, -\frac {2 \, \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) - \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, f}, \frac {2 \, \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) + \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) - \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right )}{f}\right ] \]

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos
(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)) + sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(
f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/f, -1/2*(2*sqrt(-b)*arctan(sqrt(-b)*sqrt(
((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) - sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt
(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)))/f, 1/2*(2*s
qrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) + sqrt(b)*log(-((a -
 b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x +
 e)^2))/f, (sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) - sqrt(
-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b))/f]

Sympy [F]

\[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \csc {\left (e + f x \right )}\, dx \]

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x), x)

Maxima [F]

\[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \csc \left (f x + e\right ) \,d x } \]

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e), x)

Giac [F(-2)]

Exception generated. \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

Mupad [F(-1)]

Timed out. \[ \int \csc (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{\sin \left (e+f\,x\right )} \,d x \]

[In]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x),x)

[Out]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x), x)